arXiv Analytics

Sign in

arXiv:math-ph/0511070AbstractReferencesReviewsResources

Photon Green Functions in Curved Space-Time

Giuseppe Bimonte, Enrico Calloni, Luciano Di Fiore, Giampiero Esposito, Leopoldo Milano, Luigi Rosa

Published 2005-11-23Version 1

Quantization of electrodynamics in curved space-time in the Lorenz gauge and with arbitrary gauge parameter makes it necessary to study Green functions of non-minimal operators with variable coefficients. Starting from the integral representation of photon Green functions, we link them to the evaluation of integrals involving Gamma-functions. Eventually, the full asymptotic expansion of the Feynman photon Green function at small values of the world function, as well as its explicit dependence on the gauge parameter, are obtained without adding by hand a mass term to the Faddeev-Popov Lagrangian. Coincidence limits of second covariant derivatives of the associated Hadamard function are also evaluated, as a first step towards the energy-momentum tensor in the non-minimal case.

Comments: Latex file. Talk given by G. Esposito at the QFEXT03 Conference in Norman, Oklahoma, September 2003
Journal: Published in Quantum Field Theory Under the Influence of External Conditions: Proceedings. Edited by Kim Milton, Rinton Press, 2004. pp. 358-363 (ISBN 1-58949-033-9)
Categories: math-ph, math.MP
Related articles: Most relevant | Search more
arXiv:1007.4232 [math-ph] (Published 2010-07-23)
The motion of relativistic strings in curved space-times
arXiv:0909.4122 [math-ph] (Published 2009-09-23, updated 2015-10-19)
The geometric $β$-function in curved space-time under operator regularization
arXiv:1312.5674 [math-ph] (Published 2013-12-19, updated 2013-12-22)
Renormalization of quantum field theory on curved space-times, a causal approach