arXiv:math-ph/0503005AbstractReferencesReviewsResources
Existence of spectral gaps, covering manifolds and residually finite groups
Published 2005-03-03, updated 2007-12-10Version 3
In the present paper we consider Riemannian coverings $(X,g) \to (M,g)$ with residually finite covering group $\Gamma$ and compact base space $(M,g)$. In particular, we give two general procedures resulting in a family of deformed coverings $(X,g_\eps) \to (M,g_\eps)$ such that the spectrum of the Laplacian $\Delta_{(X_\eps,g_\eps)}$ has at least a prescribed finite number of spectral gaps provided $\eps$ is small enough. If $\Gamma$ has a positive Kadison constant, then we can apply results by Br\"uning and Sunada to deduce that $\spec \Delta_{(X,g_\eps)}$ has, in addition, band-structure and there is an asymptotic estimate for the number $N(\lambda)$ of components of $\spec {\laplacian {(X,g_\eps)}}$ that intersect the interval $[0,\lambda]$. We also present several classes of examples of residually finite groups that fit with our construction and study their interrelations. Finally, we mention several possible applications for our results.