arXiv Analytics

Sign in

arXiv:math-ph/0502014AbstractReferencesReviewsResources

Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case

Olaf Post

Published 2005-02-03Version 1

We consider a family of open sets $M_\epsilon$ which shrinks with respect to an appropriate parameter $\epsilon$ to a graph. Under the additional assumption that the vertex neighbourhoods are small we show that the appropriately shifted Dirichlet spectrum of $M_\epsilon$ converges to the spectrum of the (differential) Laplacian on the graph with Dirichlet boundary conditions at the vertices, i.e., a graph operator without coupling between different edges. The smallness is expressed by a lower bound on the first eigenvalue of a mixed eigenvalue problem on the vertex neighbourhood. The lower bound is given by the first transversal mode of the edge neighbourhood. We also allow curved edges and show that all bounded eigenvalues converge to the spectrum of a Laplacian acting on the edge with an additional potential coming from the curvature.

Comments: 18 pages, 4 figures. to appear in a special issue of Journal of Physics A
Categories: math-ph, math.MP
Subjects: 35P05, 58J50, 81V99
Related articles: Most relevant | Search more
arXiv:math-ph/0204049 (Published 2002-04-26)
Quantum strips on surfaces
arXiv:math-ph/0312028 (Published 2003-12-10, updated 2004-08-16)
Convergence of spectra of graph-like thin manifolds
arXiv:math-ph/0405039 (Published 2004-05-13)
A lower bound to the spectral threshold in curved tubes