arXiv:hep-th/0508200AbstractReferencesReviewsResources
Eguchi-Hanson Solitons in Odd Dimensions
Published 2005-08-26Version 1
We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added feature of having Lorentzian signatures. They are asymptotic to (A)dS$_{d+1}/Z_p$. In the AdS case their energy is negative relative to that of pure AdS. We present perturbative evidence in 5 dimensions that such metrics are the states of lowest energy in their asymptotic class, and present a conjecture that this is generally true for all such metrics. In the dS case these solutions have a cosmological horizon. We show that their mass at future infinity is less than that of pure dS.