arXiv Analytics

Sign in

arXiv:hep-th/0107074AbstractReferencesReviewsResources

Bulk Quantization of Gauge Theories: Confined and Higgs Phases

Laurent Baulieu, Daniel Zwanziger

Published 2001-07-10Version 1

We deepen the understanding of the quantization of the Yang-Mills field by showing that the concept of gauge fixing in 4 dimensions is replaced in the 5-dimensional formulation by a procedure that amounts to an $A$-dependent gauge transformation. The 5-dimensional formulation implements the restriction of the physical 4-dimensional gluon field to the Gribov region, while being a local description that is under control of BRST symmetries both of topological and gauge type. The ghosts decouple so the Euclidean probability density is everywhere positive, in contradistinction to the Faddeev-Popov method for which the determinant changes sign outside the Gribov region. We include in our discussion the coupling of the gauge theory to a Higgs field, including the case of spontaneously symmetry breaking. We introduce a minimizing functional on the gauge orbit that could be of interest for numerical gauge fixing in the simulations of spontaneously broken lattice gauge theories. Other new results are displayed, such as the identification of the Schwinger-Dyson equation of the five dimensional formulation in the (singular) Landau gauge with that of the ordinary Faddeev-Popov formulation, order by order in perturbation theory.

Comments: 34 pages
Journal: JHEP 0108:015,2001
Categories: hep-th
Related articles: Most relevant | Search more
arXiv:hep-th/0006036 (Published 2000-06-05, updated 2000-11-16)
Gauge and Topological Symmetries in the Bulk Quantization of Gauge Theories
arXiv:hep-th/0106185 (Published 2001-06-20, updated 2001-11-09)
k-string tensions in SU(N) gauge theories
arXiv:hep-th/9502080 (Published 1995-02-14, updated 1995-09-28)
Aharonov-Bohm Order Parameters for Non-Abelian Gauge Theories