arXiv:hep-th/0008085AbstractReferencesReviewsResources
Some exact results for the three-layer Zamolodchikov model
Herman Boos, Vladimir Mangazeev
Published 2000-08-10Version 1
In this paper we continue the study of the three-layer Zamolodchikov model started in our previous works. We analyse numerically the solutions to the Bethe ansatz equations. We consider two regimes I and II which differ by the signs of the spherical sides (a1,a2,a3)->(-a1,-a2,-a3). We accept the two-line hypothesis for the regime I and the one-line hypothesis for the regime II. In the thermodynamic limit we derive integral equations for distribution densities and solve them exactly. We calculate the partition function for the three-layer Zamolodchikov model and check a compatibility of this result with the functional relations. We also do some numerical checkings of our results.