arXiv Analytics

Sign in

arXiv:cs/0610059 [cs.CV]AbstractReferencesReviewsResources

Camera motion estimation through planar deformation determination

Claire Jonchery, Françoise Dibos, Georges Koepfler

Published 2006-10-11, updated 2008-03-27Version 2

In this paper, we propose a global method for estimating the motion of a camera which films a static scene. Our approach is direct, fast and robust, and deals with adjacent frames of a sequence. It is based on a quadratic approximation of the deformation between two images, in the case of a scene with constant depth in the camera coordinate system. This condition is very restrictive but we show that provided translation and depth inverse variations are small enough, the error on optical flow involved by the approximation of depths by a constant is small. In this context, we propose a new model of camera motion, that allows to separate the image deformation in a similarity and a ``purely'' projective application, due to change of optical axis direction. This model leads to a quadratic approximation of image deformation that we estimate with an M-estimator; we can immediatly deduce camera motion parameters.

Comments: 21 pages, version modifi\'ee accept\'e le 20 mars 2008
Journal: Journal of Mathematical Imaging and Vision 32, 1 (2008) 73-87
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:2310.13768 [cs.CV] (Published 2023-10-20)
PACE: Human and Camera Motion Estimation from in-the-wild Videos
arXiv:2403.01174 [cs.CV] (Published 2024-03-02)
Consistent and Asymptotically Statistically-Efficient Solution to Camera Motion Estimation
arXiv:2408.16426 [cs.CV] (Published 2024-08-29)
COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation
Jiefeng Li et al.