arXiv:cond-mat/9612147AbstractReferencesReviewsResources
Invariant structure of the hierarchy theory of fractional quantum Hall states with spin
Published 1996-12-16Version 1
We describe the invariant structure common to abelian fractional quantum Hall systems with spin. It appears in a generalization of the lattice description of the polarized hierarchy that encompasses both partially polarized and unpolarized ground state systems. We formulate, using the spin-charge decomposition, conditions that should be satisfied so that the description is SU(2) invariant. In the case of the spin- singlet hierarchy construction, we find that there are as many SU(2) symmetries as there are levels in the construction. We show the existence of a spin and charge lattice for the systems with spin. The ``gluing'' of the charge and spin degrees of freedom in their bulk is described by the gluing theory of lattices.