arXiv:cond-mat/0702429AbstractReferencesReviewsResources
Charge transport in a Tomonaga-Luttinger liquid: effects of pumping and bias
Published 2007-02-19, updated 2007-07-07Version 2
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, point-like impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the DC and AC components of the current have power law dependences on the bias and pumping frequencies with an exponent 2K - 1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current becomes large for special values of the bias. For non-interacting electrons with K = 1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.