arXiv:cond-mat/0610278AbstractReferencesReviewsResources
On the static length of relaxation and the origin of dynamic heterogeneity in fragile glass-forming liquids
Published 2006-10-10Version 1
The most puzzling aspect of the glass transition observed in laboratory is an apparent decoupling of dynamics from structure. In this paper we recount the implication of various theories of glass transition for the static correlation length in an attempt to reconcile the dynamic and static lengths associate with the glass problem. We argue that a more recent characterization of the static relaxation length based on the bond ordering scenario, as the typical length over which the energy fluctuations are correlated, is more consistent with, and indeed in perfect agreement with the typical linear size of the dynamically heterogeneous domains observed in deeply supercooled liquids. The correlated relaxation of bonds in terms of energy is therefore identified as the physical origin of the observed dynamic heterogeneity.