arXiv Analytics

Sign in

arXiv:cond-mat/0604554AbstractReferencesReviewsResources

Electron interactions in graphene in a strong magnetic field

M. O. Goerbig, R. Moessner, B. Doucot

Published 2006-04-24, updated 2006-09-28Version 2

Graphene in the quantum Hall regime exhibits a multi-component structure due to the electronic spin and chirality degrees of freedom. While the applied field breaks the spin symmetry explicitly, we show that the fate of the chirality SU(2) symmetry is more involved: the leading symmetry-breaking terms differ in origin when the Hamiltonian is projected onto the central (n=0) rather than any of the other Landau levels. Our description at the lattice level leads to a Harper equation; in its continuum limit, the ratio of lattice constant a and magnetic length l_B assumes the role of a small control parameter in different guises. The leading symmetry-breaking terms are direct (n=0) and exchange (n different from 0) terms, which are algebraically small in a/l_B. We comment on the Haldane pseudopotentials for graphene, and evaluate the easy-plane anisotropy of the graphene ferromagnet.

Comments: 4 pages, 1 figure; revised version contains a more detailed comparison with experimental results; accepted for publication in PRB
Journal: Phys. Rev. B 74, 161407 (2006)
Related articles: Most relevant | Search more
arXiv:cond-mat/0004110 (Published 2000-04-07)
Coulomb effects on the transport properties of quantum dots in strong magnetic field
arXiv:cond-mat/0608482 (Published 2006-08-22)
Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime
arXiv:1306.4988 [cond-mat.mes-hall] (Published 2013-06-20, updated 2013-10-10)
Spatial Dependence of Electron Interactions in Carbon Nanotubes