arXiv Analytics

Sign in

arXiv:cond-mat/0603520AbstractReferencesReviewsResources

Estimation of critical exponents from the cluster coefficients: Application to hard spheres

Eli Eisenberg, Asher Baram

Published 2006-03-20, updated 2007-03-27Version 2

For a large class of repulsive interaction models, the Mayer cluster integrals can be transformed into a tridiagonal symmetric matrix, whose elements converge to a constant with a 1/n^2 correction. We find exact expressions, in terms of these correction terms, for the two critical exponents describing the density near the two singular termination points of the fluid phase. We apply the method to the hard-spheres model and find that the metastable fluid phase terminates at rho_t=0.751(5). The density near the transition is given by (rho_t-rho)~(z_t-z)^sigma', where the critical exponent is predicted to be sigma'=0.0877(25). The termination density is close to the observed glass transition, and thus the above critical behavior is expected to characterize the onset of glassy behavior in hard spheres.

Related articles: Most relevant | Search more
arXiv:cond-mat/0507525 (Published 2005-07-22, updated 2006-01-03)
An algorithm for counting circuits: application to real-world and random graphs
arXiv:cond-mat/0411450 (Published 2004-11-17)
New Application of Functional Integrals to Classical Mechanics
arXiv:0808.4160 [cond-mat.stat-mech] (Published 2008-08-29)
Using Relative Entropy to Find Optimal Approximations: an Application to Simple Fluids