arXiv:cond-mat/0510254AbstractReferencesReviewsResources
Quantum chaotic scattering in time-dependent external fields: random matrix approach
Published 2005-10-10Version 1
We review the random matrix description of electron transport through open quantum dots, subject to time-dependent perturbations. All characteristics of the current linear in the bias can be expressed in terms of the scattering matrix, calculated for a time-dependent Hamiltonian. Assuming that the Hamiltonian belongs to a Gaussian ensemble of random matrices, we investigate various statistical properties of the direct current in the ensemble. Particularly, even at zero bias the time-dependent perturbation induces current, called photovoltaic current. We discuss dependence of the photovoltaic current and its noise on the frequency and the strength of the perturbation. We also describe the effect of time-dependent perturbation on the weak localization correction to the conductance and on conductance fluctuations.