arXiv Analytics

Sign in

arXiv:cond-mat/0509077AbstractReferencesReviewsResources

Level Crossing Analysis of Burgers Equation in 1+1 Dimensions

M. Sadegh Movahed, A. Bahraminasab, H. Rezazadeh, A. A. Masoudi

Published 2005-09-03, updated 2006-11-14Version 3

We investigate the average frequency of positive slope $\nu_{\alpha}^{+}$, crossing the velocity field $u(x)- \bar u = \alpha$ in the Burgers equation. The level crossing analysis in the inviscid limit and total number of positive crossing of velocity field before creation of singularities are given. The main goal of this paper is to show that this quantity, $\nu_{\alpha}^{+}$, is a good measure for the fluctuations of velocity fields in the Burgers turbulence.

Comments: 5 pages, 3 figures
Journal: J. Phys. A: Math. Gen. 39 3903-3909 (2006)
Categories: cond-mat.stat-mech
Related articles: Most relevant | Search more
arXiv:cond-mat/0212363 (Published 2002-12-16)
On Ising and dimer models in two and three dimensions
arXiv:cond-mat/9702249 (Published 1997-02-27, updated 1998-09-21)
Comparison of rigidity and connectivity percolation in two dimensions
arXiv:cond-mat/0101086 (Published 2001-01-08)
Width of phonon states on defects of various dimensions