arXiv:cond-mat/0508375AbstractReferencesReviewsResources
Path-integral Monte Carlo simulations for interacting few-electron quantum dots with spin-orbit coupling
Published 2005-08-16, updated 2005-12-02Version 2
We develop path-integral Monte Carlo simulations for a parabolic two-dimensional (2D) quantum dot containing $N$ interacting electrons in the presence of Dresselhaus and/or Rashba spin-orbit couplings. Our method solves in a natural way the spin contamination problem and allows for numerically exact finite-temperature results at weak spin-orbit coupling. For $N<10$ electrons, we present data for the addition energy, the particle density, and the total spin $S$ in the Wigner molecule regime of strong Coulomb interactions. We identify magic numbers at N=3 and N=7 via a peak in the addition energy. These magic numbers differ both from weak-interaction and classical predictions, and are stable with respect to (weak) spin-orbit couplings.