arXiv:cond-mat/0507080AbstractReferencesReviewsResources
Work probability distribution in systems driven out of equilibrium
Published 2005-07-04, updated 2005-08-09Version 2
We derive the differential equation describing the time evolution of the work probability distribution function of a stochastic system which is driven out of equilibrium by the manipulation of a parameter. We consider both systems described by their microscopic state or by a collective variable which identifies a quasiequilibrium state. We show that the work probability distribution can be represented by a path integral, which is dominated by ``classical'' paths in the large system size limit. We compare these results with simulated manipulation of mean-field systems. We discuss the range of applicability of the Jarzynski equality for evaluating the system free energy using these out-of-equilibrium manipulations. Large fluctuations in the work and the shape of the work distribution tails are also discussed.