arXiv Analytics

Sign in

arXiv:cond-mat/0505195AbstractReferencesReviewsResources

Voltage-tunable ferromagnetism in semimagnetic quantum dots with few particles: magnetic polarons and electrical capacitance

Alexander O. Govorov

Published 2005-05-08, updated 2005-08-07Version 2

Magnetic semiconductor quantum dots with a few carriers represent an interesting model system where ferromagnetic interactions can be tuned by voltage. By designing the geometry of a doped quantum dot, one can tailor the anisotropic quantum states of magnetic polarons. The strong anisotropy of magnetic polaron states in disk-like quantum dots with holes comes from the spin splitting in the valence band. The binding energy and spontaneous magnetization of quantum dots oscillate with the number of particles and reflect the shell structure. Due to the Coulomb interaction, the maximum binding energy and spin polarization of magnetic polarons occur in the regime of Hund's rule when the total spin of holes in a quantum dot is maximum. With increasing number of particles in a quantum dot and for certain orbital configurations, the ferromagnetic state becomes especially stable or may have broken symmetry. In quantum dots with a strong ferromagnetic interaction, the ground state can undergo a transition from a magnetic to a nonmagnetic state with increasing temperature or decreasing exchange interaction. The characteristic temperature and fluctuations of magnetic polarons depend on the binding energy and degeneracy of the shell. The capacitance spectra of magnetic quantum dots with few particles reveal the formation of polaron states.

Related articles: Most relevant | Search more
arXiv:1506.08920 [cond-mat.mes-hall] (Published 2015-06-30)
Quantum Monte Carlo Calculation of the Binding Energy of Bilayer Graphene
arXiv:1304.3018 [cond-mat.mes-hall] (Published 2013-04-10)
Influence of exciton spin relaxation on the photoluminescence spectra of semimagnetic quantum dots
arXiv:1711.08562 [cond-mat.mes-hall] (Published 2017-11-23)
On Binding Energy of Trions in Bulk Materials