arXiv:cond-mat/0412491AbstractReferencesReviewsResources
Hysteretic resistance spikes in quantum Hall ferromagnets without domains
Henrique J. P. Freire, J. Carlos Egues
Published 2004-12-17, updated 2007-07-12Version 2
We use spin-density-functional theory to study recently reported hysteretic magnetoresistance \rho_{xx} spikes in Mn-based 2D electron gases [Jaroszy\'{n}ski et al. Phys. Rev. Lett. (2002)]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum-Hall-ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in \rho_{xx}, we predict hysteretic dips in the Hall resistance \rho_{xy}. Our theory, without domain walls, satisfactorily explains the recent data.