arXiv:cond-mat/0410683AbstractReferencesReviewsResources
Fermionization in an expanding 1D gas of hard-core bosons
Marcos Rigol, Alejandro Muramatsu
Published 2004-10-27, updated 2005-07-05Version 2
We show by means of an exact numerical approach that the momentum distribution of a free expanding gas of hard-core bosons on a one-dimensional lattice approaches to the one of noninteracting fermions, acquiring a Fermi edge. Yet there is a power-law decay of the one-particle density matrix $\rho_x\sim 1/\sqrt{x}$, as usual for hard-core bosons in the ground state, which accounts for a large occupation of the lowest natural orbitals for all expansion times. The fermionization of the momentum distribution function, which is not observed in equilibrium, is analyzed in detail.
Comments: Revtex file, 4 pages, 6 figures, published version
Journal: Phys. Rev. Lett. 94, 240403 (2005)
Categories: cond-mat.stat-mech, cond-mat.other
Keywords: hard-core bosons, expanding 1d gas, fermionization, lowest natural orbitals, one-dimensional lattice approaches
Tags: journal article
Related articles: Most relevant | Search more
Emergence of quasi-condensates of hard-core bosons at finite momentum
Universal properties of hard-core bosons confined on one-dimensional lattices
Ground-state properties of hard-core bosons confined on one-dimensional optical lattices