arXiv:cond-mat/0408265AbstractReferencesReviewsResources
Optical response of electrons in a random potential
Alexander Weisse, Gerald Schubert, Holger Fehske
Published 2004-08-12Version 1
Using our recently developed Chebyshev expansion technique for finite-temperature dynamical correlation functions we numerically study the AC conductivity $\sigma(\omega)$ of the Anderson model on large cubic clusters of up to $100^3$ sites. Extending previous results we focus on the role of the boundary conditions and check the consistency of the DC limit, $\omega\to 0$, by comparing with direct conductance calculations based on a Greens function approach in a Landauer B\"uttiker type setup.
Comments: 2 pages, 3 figs, submitted to SCES'04
Journal: Physica B 359-361, 786 (2005)
Categories: cond-mat.dis-nn
Keywords: random potential, optical response, developed chebyshev expansion technique, greens function approach, finite-temperature dynamical correlation functions
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1703.10066 [cond-mat.dis-nn] (Published 2017-03-29)
Exponential number of equilibria and depinning threshold for a directed polymer in a random potential
arXiv:1705.03923 [cond-mat.dis-nn] (Published 2017-05-10)
The theory of avoided criticality in quantum motion in a random potential in high dimensions
arXiv:2107.09385 [cond-mat.dis-nn] (Published 2021-07-20)
Logarithmic expansion of many-body wavepackets in random potentials