arXiv Analytics

Sign in

arXiv:cond-mat/0407523AbstractReferencesReviewsResources

Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function

Eugenio Lippiello, Federico Corberi, Marco Zannetti

Published 2004-07-20, updated 2005-01-18Version 2

We derive for Ising spins an off-equilibrium generalization of the fluctuation dissipation theorem, which is formally identical to the one previously obtained for soft spins with Langevin dynamics [L.F.Cugliandolo, J.Kurchan and G.Parisi, J.Phys.I France \textbf{4}, 1641 (1994)]. The result is quite general and holds both for dynamics with conserved and non conserved order parameter. On the basis of this fluctuation dissipation relation, we construct an efficient numerical algorithm for the computation of the linear response function without imposing the perturbing field, which is alternative to those of Chatelain [J.Phys. A \textbf{36}, 10739 (2003)] and Ricci-Tersenghi [Phys.Rev.E {\bf 68}, 065104(R) (2003)]. As applications of the new algorithm, we present very accurate data for the linear response function of the Ising chain, with conserved and non conserved order parameter dynamics, finding that in both cases the structure is the same with a very simple physical interpretation. We also compute the integrated response function of the two dimensional Ising model, confirming that it obeys scaling $\chi (t,t_w)\simeq t_w^{-a}f(t/t_w)$, with $a =0.26\pm 0.01$, as previously found with a different method.

Related articles: Most relevant | Search more
Fluctuation dissipation theorem and electrical noise revisited
arXiv:cond-mat/0307542 (Published 2003-07-22)
Scaling of the linear response function from zero field cooled and thermoremanent magnetization in phase ordering kinetics
Linear Response Theory and Fluctuation Dissipation Theorem for Systems with Absorbing States