arXiv Analytics

Sign in

arXiv:cond-mat/0405593AbstractReferencesReviewsResources

Static and dynamic properties of the XXZ chain with long-range interactions

L. L. Gonçalves, L. P. S. Coutinho, J. P. de Lima

Published 2004-05-25Version 1

The one-dimensional XXZ model (s=1/2) in a transverse field, with uniform long-range interactions among the transverse components of the spins, is studied. The model is exactly solved by introducing the Jordan-Wigner transformation and the integral Gaussian transformation. The complete critical behaviour and the critical surface for the quantum and classical transitions, in the space generated by the transverse field and the interaction parameters, are presented. The crossover lines for the various classical/quantum regimes are also determined exactly. It is shown that, besides the tricritical point associated with the classical transition, there are also two quantum critical points: a bicritical point where the classical second-order critical line meets the quantum critical line, and a first-order transition point at zero field. It is also shown that the phase diagram for the first-order classical/quantum transitions presents the same structure as for the second-order classical/quantum transitions. The critical classical and quantum exponents are determined, and the internal energy, the specific heat and the isothermal susceptibility,$\chi_{T}^{zz},$ are presented for the different critical regimes. The two-spin static and dynamic correlation functions, $<S_{_{j}}^{z}S_{l}^{z}>$, are also presented, and the dynamic susceptibility, $\chi_{q}^{zz}$($\omega),$is obtained in closed form. Explicit results are presented at $T=0,$ and it is shown that the isothermal susceptibility, $\chi_{T}^{zz},$ is different from the static one, $\chi_{q}^{zz}$($0).$ Finally, it is shown that, at $T=0,$ the internal energy close to the first-order quantum transition satisfies the scaling form recently proposed by Continentino and Ferreira.

Comments: 24 pages, 11 figures. To appear in Physica A
Categories: cond-mat.stat-mech
Related articles: Most relevant | Search more
arXiv:cond-mat/0112124 (Published 2001-12-07)
Ensemble inequivalence in systems with long-range interactions
arXiv:cond-mat/0601409 (Published 2006-01-18, updated 2006-02-21)
Comment on "Entropy of Classical Systems with Long-Range Interactions" by T.M. Rocha Filho et al, PRL 95, 190601 (2005)
arXiv:cond-mat/0201130 (Published 2002-01-09)
Dynamic Properties of Stretched Water