arXiv Analytics

Sign in

arXiv:cond-mat/0311513AbstractReferencesReviewsResources

Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

Seung-Yeop Lee, Vito W. Scarola, J. K. Jain

Published 2003-11-21Version 1

Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at $\nu=n/(2pn\pm 1)$ corresponds to filled composite-fermion Landau levels,and the compressible state at $\nu=1/2p$ to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.

Comments: 16 pages, 7 figures
Journal: Phys. Rev. B, vol. 66, 085336 (2002)
Categories: cond-mat.mes-hall
Related articles: Most relevant | Search more
arXiv:1405.3667 [cond-mat.mes-hall] (Published 2014-05-14, updated 2014-08-21)
The Effects of Landau level mixing on the fractional quantum Hall effect in monolayer Graphene
arXiv:cond-mat/9702098 (Published 1997-02-11, updated 1997-12-16)
Towards a field theory of the fractional quantum Hall states
arXiv:cond-mat/0602634 (Published 2006-02-27)
Switching noise as a probe of statistics in the fractional quantum Hall effect