arXiv Analytics

Sign in

arXiv:cond-mat/0309520AbstractReferencesReviewsResources

Kondo correlation and spin-flip scattering in spin-dependent transport through a quantum dot coupled to ferromagnetic leads

Jing Ma, X. L. Lei

Published 2003-09-23Version 1

We investigate the linear and nonlinear dc transport through an interacting quantum dot connected to two ferromagnetic electrodes around Kondo regime with spin-flip scattering in the dot. Using a slave-boson mean field approach for the Anderson Hamiltonian having finite on-site Coulomb repulsion, we find that a spin-flip scattering always depresses the Kondo correlation at arbitrary polarization strength in both parallel and antiparallel alignment of the lead magnetization and that it effectively reinforces the tunneling related conductance in the antiparallel configuration. For systems deep in the Kondo regime, the zero-bias single Kondo peak in the differential conductance is split into two peaks by the intradot spin-flip scattering; while for systems somewhat further from the Kondo center, the spin-flip process in the dot may turn the zero-bias anomaly into a three-peak structure.

Related articles: Most relevant | Search more
arXiv:cond-mat/0207251 (Published 2002-07-10, updated 2002-10-02)
Effect of the Kondo correlation on thermopower in a Quantum Dot
arXiv:cond-mat/0111530 (Published 2001-11-28, updated 2002-04-10)
Effect of the Kondo correlation on Shot Noise in a Quantum Dot
arXiv:cond-mat/0501172 (Published 2005-01-09)
Nonequilibrium Kondo Effect in a Quantum Dot Coupled to Ferromagnetic Leads