arXiv Analytics

Sign in

arXiv:cond-mat/0207233AbstractReferencesReviewsResources

Damage spreading in the Bak-Sneppen model: Sensitivity to the initial conditions and equilibration dynamics

U. Tirnakli, M. L. Lyra

Published 2002-07-09, updated 2003-02-27Version 3

The short-time and long-time dynamics of the Bak-Sneppen model of biological evolution are investigated using the damage spreading technique. By defining a proper Hamming distance measure, we are able to make it exhibits an initial power-law growth which, for finite size systems, is followed by a decay towards equilibrium. In this sense, the dynamics of self-organized critical states is shown to be similar to the one observed at the usual critical point of continuous phase-transitions and at the onset of chaos of non-linear low-dimensional dynamical maps. The transient, pre-asymptotic and asymptotic exponential relaxation of the Hamming distance between two initially uncorrelated equilibrium configurations is also shown to be fitted within a single mathematical framework. A connection with nonextensive statistical mechanics is exhibited.

Comments: 6 pages, 4 figs, revised version, accepted for publication in Int.J.Mod.Phys.C 14 (2003)
Related articles: Most relevant | Search more
arXiv:cond-mat/0501230 (Published 2005-01-11, updated 2005-01-12)
Edge of chaos of the classical kicked top map: Sensitivity to initial conditions
arXiv:cond-mat/9809151 (Published 1998-09-10)
Circular-like Maps: Sensitivity to the Initial Conditions, Multifractality and Nonextensivity
arXiv:cond-mat/0306647 (Published 2003-06-25, updated 2004-03-15)
Sensitivity to initial conditions in self-organized critical systems