arXiv:cond-mat/0108253AbstractReferencesReviewsResources
Anisotropic Lifshitz Point at $O(ε_L^2)$
Luiz C. de Albuquerque, Marcelo M. Leite
Published 2001-08-15Version 1
We present the critical exponents $\nu_{L2}$, $\eta_{L2}$ and $\gamma_{L}$ for an $m$-axial Lifshitz point at second order in an $\epsilon_{L}$ expansion. We introduced a constraint involving the loop momenta along the $m$-dimensional subspace in order to perform two- and three-loop integrals. The results are valid in the range $0 \leq m < d$. The case $m=0$ corresponds to the usual Ising-like critical behavior.
Comments: 10 pages, Revtex
Journal: J.Phys. A34 (2001) L327-332
Categories: cond-mat.stat-mech, hep-th
Keywords: anisotropic lifshitz point, axial lifshitz point, loop momenta, usual ising-like critical behavior, dimensional subspace
Tags: journal article
Related articles:
arXiv:cond-mat/0304088 (Published 2003-04-03)
Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors