arXiv:cond-mat/0108180AbstractReferencesReviewsResources
Phase diagram of a Disordered Boson Hubbard Model in Two Dimensions
Ji-Woo Lee, Min-Chul Cha, Doochul Kim
Published 2001-08-10, updated 2001-11-28Version 3
We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model. The phase diagram of this model is constructed in terms of the disorder strength and the chemical potential. Via quantum Monte Carlo simulations, we find a multicritical line separating the weak-disorder regime, where a random potential is irrelevant, from the strong-disorder regime. In the weak-disorder regime, the Mott-insulator-to-superfluid transition occurs, while, in the strong-disorder regime, the Bose-glass-to-superfluid transition occurs. On the multicritical line, the insulator-to-superfluid transition has the dynamical critical exponent $z=1.35 \pm 0.05$ and the correlation length critical exponent $\nu=0.67 \pm 0.03$, that are different from the values for the transitions off the line. We suggest that the proliferation of the particle-hole pairs screens out the weak disorder effects.