arXiv:cond-mat/0103332AbstractReferencesReviewsResources
Exact Finite-Size Scaling and Corrections to Scaling in the Ising Model with Brascamp-Kunz Boundary Conditions
Published 2001-03-15Version 1
The Ising model in two dimensions with the special boundary conditions of Brascamp and Kunz is analysed. Leading and sub-dominant scaling behaviour of the Fisher zeroes are determined exactly. The finite-size scaling, with corrections, of the specific heat is determined both at the critical and pseudocritical points. The shift exponents associated with scaling of the pseudocritical points are not the same as the inverse correlation length critical exponent. All corrections to scaling are analytic.
Comments: 15 pages
Journal: Phys.Rev. B65 (2002) 064110
Categories: cond-mat.stat-mech, hep-lat
Keywords: brascamp-kunz boundary conditions, exact finite-size scaling, ising model, corrections, inverse correlation length critical exponent
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2303.03484 [cond-mat.stat-mech] (Published 2023-03-06)
Exact coefficients of finite-size corrections in the Ising model with Brascamp-Kunz boundary conditions and their relationships for strip and cylindrical geometries
arXiv:cond-mat/9904059 (Published 1999-04-05)
Decay of the metastable phase in d=1 and d=2 Ising models
Exact solution of the spin-1/2 Ising model on the Shastry-Sutherland (orthogonal-dimer) lattice