arXiv:cond-mat/0009365AbstractReferencesReviewsResources
Critical dimensions of the diffusion equation
Published 2000-09-22Version 1
We study the evolution of a random initial field under pure diffusion in various space dimensions. From numerical calculations we find that the persistence properties of the system show sharp transitions at critical dimensions d1 ~ 26 and d2 ~ 46. We also give refined measurements of the persistence exponents for low dimensions.
Comments: 4 pages, 5 figures
Journal: Phys.Rev.Lett.86:2712-2715,2001
Keywords: diffusion equation, random initial field, critical dimensions d1, low dimensions, sharp transitions
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1806.11275 [cond-mat.stat-mech] (Published 2018-06-29)
Exact persistence exponent for the $2d$-diffusion equation and related Kac polynomials
arXiv:1510.07844 [cond-mat.stat-mech] (Published 2015-10-27)
Heat transport in low dimensions: introduction and phenomenology
arXiv:2304.02348 [cond-mat.stat-mech] (Published 2023-04-05)
Dynamical theory of topological defects I: the multivalued solution of the diffusion equation