arXiv:cond-mat/0008269AbstractReferencesReviewsResources
One-parameter superscaling in three dimensions
Janos Pipek, Imre Varga, Etienne Hofstetter
Published 2000-08-18Version 1
Numerical and analytical details are presented on the newly discovered superscaling property of the energy spacing distribution in the three dimensional Anderson model.
Comments: 4 pages, 3 figures
Journal: Physica E (Amsterdam) 9 380-383 (2001).
Categories: cond-mat.dis-nn, cond-mat.mes-hall
Keywords: one-parameter superscaling, dimensions, dimensional anderson model, energy spacing distribution
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1802.00443 [cond-mat.dis-nn] (Published 2018-02-01)
Bulk Fermi arc of disordered Dirac fermions in two dimensions
arXiv:1612.06156 [cond-mat.dis-nn] (Published 2016-12-19)
Restoration of Dimensional Reduction in the Random-Field Ising Model at Five Dimensions
arXiv:2003.09590 [cond-mat.dis-nn] (Published 2020-03-21)
Percolation between $k$ separated points in two dimensions