arXiv Analytics

Sign in

arXiv:cond-mat/0002076AbstractReferencesReviewsResources

Small-worlds: How and why

Nisha Mathias, Venkatesh Gopal

Published 2000-02-05Version 1

We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a near random network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz (Nature {\bf 393}, 440 (1998)), we find an alternate route to small-world behaviour through the formation of hubs, small clusters where one vertex is connected to a large number of neighbours.

Related articles: Most relevant | Search more
arXiv:cond-mat/0409012 (Published 2004-09-01, updated 2005-11-10)
Is small-world network disordered?
arXiv:cond-mat/0301510 (Published 2003-01-27)
Dynamic critical behavior of the XY model in small-world networks
arXiv:1705.07875 [cond-mat.dis-nn] (Published 2017-05-22)
The effects of noise and time delay on the synchronization of the Kuramoto model in small-world networks