arXiv:2505.01645 [math.NT]AbstractReferencesReviewsResources
Note on a sum involving the divisor function
Published 2025-05-03Version 1
Let $d(n)$ be the divisor function and denote by $[t]$ the integral part of the real number $t$. In this paper, we prove that $$\sum_{n\leq x^{1/c}}d\left(\left[\frac{x}{n^c}\right]\right)=d_cx^{1/c}+\mathcal{O}_{\varepsilon,c} \left(x^{\max\{(2c+2)/(2c^2+5c+2),5/(5c+6)\}+\varepsilon}\right),$$ where $d_c=\sum_{k\geq1}d(k)\left(\frac{1}{k^{1/c}}-\frac{1}{(k+1)^{1/c}}\right)$ is a constant. This result constitutes an improvement upon that of Feng.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2410.17939 [math.NT] (Published 2024-10-23)
Arithmetic constants for symplectic variances of the divisor function
Primes in the form $[αp+β]$
arXiv:1109.3580 [math.NT] (Published 2011-09-16)
An integral representation of divisor function. An equation for prime numbers