arXiv Analytics

Sign in

arXiv:2501.18725 [math.DS]AbstractReferencesReviewsResources

Dimension of limit sets in variable curvature

Daniel Pizarro, Felipe Riquelme, Sebastián Villarroel

Published 2025-01-30Version 1

We compute the Hausdorff dimension of the limit set of an arbitrary Kleinian group of isometries of a complete simply-connected Riemannian manifold with pinched negative sectional curvatures $-b^2\leq k\leq -1$. Moreover, we construct hyperbolic surfaces with a set of non-recurrent orbits of dimension zero.

Related articles: Most relevant | Search more
arXiv:1605.02098 [math.DS] (Published 2016-05-06)
Hausdorff dimension of limit sets
arXiv:1501.00157 [math.DS] (Published 2014-12-31)
Quotients of $\mathbb{N}^*$, $ω$-limit sets, and chain transitivity
arXiv:1301.5630 [math.DS] (Published 2013-01-23, updated 2014-09-15)
Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces (extended version)