arXiv Analytics

Sign in

arXiv:2501.05968 [math.CO]AbstractReferencesReviewsResources

Oriented discrepancy of Hamilton cycles and paths in digraphs

Qiwen Guo, Gregory Gutin, Yongxin Lan, Qi Shao, Anders Yeo, Yacong Zhou

Published 2025-01-10Version 1

Erd{\H o}s (1963) initiated extensive graph discrepancy research on 2-edge-colored graphs. Gishboliner, Krivelevich, and Michaeli (2023) launched similar research on oriented graphs. They conjectured the following generalization of Dirac's theorem: If the minimum degree $\delta$ of an $n$-vertex oriented graph $G$ is greater or equal to $n/2$,then $G$ has a Hamilton oriented cycle with at least $\delta$ forward arcs. This conjecture was proved by Freschi and Lo (2024) who posed an open problem to extend their result to an Ore-type condition. We propose two conjectures for such extensions and prove some results which provide support to the conjectures. For forward arc maximization on Hamilton oriented cycles and paths in semicomplete multipartite digraphs and locally semicomplete digraphs, we obtain characterizations which lead to polynomial-time algorithms.

Related articles: Most relevant | Search more
arXiv:math/0009230 [math.CO] (Published 2000-09-26)
The conjecture cr(C_m\times C_n)=(m-2)n is true for all but finitely many n, for each m
arXiv:math/0508537 [math.CO] (Published 2005-08-26)
On a conjecture of Widom
arXiv:math/0610977 [math.CO] (Published 2006-10-31)
New results related to a conjecture of Manickam and Singhi