arXiv Analytics

Sign in

arXiv:2501.05045 [math.RT]AbstractReferencesReviewsResources

Frobenius--Perron dimension via $τ$-tilting theory

Takahide Adachi, Ryoichi Kase

Published 2025-01-09Version 1

From the viewpoint of $\tau$-tilting theory, we study Frobenius--Perron dimensions of finite-dimensional algebras. First, we evaluate the Frobenius--Perron dimensions of $\tau$-tilting finite algebras by a combinatorial method in $\tau$-tilting theory. Secondly, we give the upper bound of the Frobenius--Perron dimension for a $\tau$-tilting finite algebra of tame representation type. Thirdly, we determine the Frobenius--Perron dimensions of Nakayama algebras and generalized preprojective algebras of Dynkin type in the sense of Geiss--Leclerc--Schr\"oer.

Related articles: Most relevant | Search more
arXiv:2203.15213 [math.RT] (Published 2022-03-29)
Fans and polytopes in tilting theory
arXiv:2106.00426 [math.RT] (Published 2021-06-01)
$τ$-tilting theory -- An introduction
arXiv:math/0311104 [math.RT] (Published 2003-11-07, updated 2004-02-05)
On the index of certain Lie algebras