arXiv Analytics

Sign in

arXiv:2501.04923 [math.CO]AbstractReferencesReviewsResources

Critical $(P_5,W_4)$-Free Graphs

Wen Xia, Jorik Jooken, Jan Goedgebeur, Iain Beaton, Ben Cameron, Shenwei Huang

Published 2025-01-09Version 1

A graph $G$ is $k$-vertex-critical if $\chi(G) = k$ but $\chi(G-v)<k$ for all $v \in V(G)$. A graph is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ nor $H_2$. A $W_4$ is the graph consisting of a $C_4$ plus an additional vertex adjacent to all the vertices of the $C_4$. We show that there are finitely many $k$-vertex-critical $(P_5,W_4)$-free graphs for all $k \ge 1$ and we characterize all $5$-vertex-critical $(P_5,W_4)$-free graphs. Our results imply the existence of a polynomial-time certifying algorithm to decide the $k$-colorability of $(P_5,W_4)$-free graphs for each $k \ge 1$ where the certificate is either a $k$-coloring or a $(k+1)$-vertex-critical induced subgraph.

Comments: arXiv admin note: text overlap with arXiv:2308.03414, arXiv:2403.05611
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2301.02436 [math.CO] (Published 2023-01-06)
Vertex-Critical $(P_5, chair)$-Free Graphs
arXiv:2206.03422 [math.CO] (Published 2022-06-07)
Vertex-critical $(P_3+\ell P_1)$-free and vertex-critical (gem, co-gem)-free graphs
arXiv:2007.00057 [math.CO] (Published 2020-06-30)
Dichotomizing $k$-vertex-critical $H$-free graphs for $H$ of order four