arXiv:2412.20196 [math.AP]AbstractReferencesReviewsResources
Optimal domains for the Cheeger inequality
Published 2024-12-28Version 1
In this paper we prove the existence of an optimal domain $\Omega_{opt}$ for the shape optimization problem $$\max\Big\{\lambda_q(\Omega)\ :\ \Omega\subset D,\ \lambda_p(\Omega)=1\Big\},$$ where $q<p$ and $D$ is a prescribed bounded subset of ${\bf R}^d$. Here $\lambda_p(\Omega)$ (respectively $\lambda_q(\Omega)$) is the first eigenvalue of the $p$-Laplacian $-\Delta_p$ (respectively $-\Delta_q$) with Dirichlet boundary condition on $\partial\Omega$. This is related to the existence of optimal sets that minimize the generalized Cheeger ratio $${\mathcal F}_{p,q}(\Omega)=\frac{\lambda_p^{1/p}(\Omega)}{\lambda_q^{1/q}(\Omega)}.$$
Comments: 10 pages, 0 figures
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1310.5636 [math.AP] (Published 2013-10-21)
On the Structure of the Solution Set of a Sign Changing Perturbation of the p-Laplacian under Dirichlet Boundary Condition
arXiv:math/0607585 [math.AP] (Published 2006-07-24)
A Faber-Krahn inequality with drift
arXiv:1605.05038 [math.AP] (Published 2016-05-17)
Existence and multiplicity of solutions for a class of Choquard equations with Hardy-Littlewood-Sobolev critical exponent