arXiv Analytics

Sign in

arXiv:2412.16054 [math.PR]AbstractReferencesReviewsResources

Limit Theorems for the Volume of Random Projections and Sections of $\ell_p^N$-balls

Joscha Prochno, Christoph Thaele, Philipp Tuchel

Published 2024-12-20Version 1

Let $\mathbb{B}_p^N$ be the $N$-dimensional unit ball corresponding to the $\ell_p$-norm. For each $N\in\mathbb N$ we sample a uniform random subspace $E_N$ of fixed dimension $m\in\mathbb{N}$ and consider the volume of $\mathbb{B}_p^N$ projected onto $E_N$ or intersected with $E_N$. We also consider geometric quantities other than the volume such as the intrinsic volumes or the dual volumes. In this setting we prove central limit theorems, moderate deviation principles, and large deviation principles as $N\to\infty$. Our results provide a complete asymptotic picture. In particular, they generalize and complement a result of Paouris, Pivovarov, and Zinn [A central limit theorem for projections of the cube, Probab. Theory Related Fields. 159 (2014), 701-719] and another result of Adamczak, Pivovarov, and Simanjuntak [Limit theorems for the volumes of small codimensional random sections of $\ell_p^n$-balls, Ann. Probab. 52 (2024), 93-126].

Related articles: Most relevant | Search more
arXiv:math/0607686 [math.PR] (Published 2006-07-26, updated 2007-11-20)
The Modulo 1 Central Limit Theorem and Benford's Law for Products
arXiv:1010.5361 [math.PR] (Published 2010-10-26, updated 2011-06-13)
Central limit theorem for multiplicative class functions on the symmetric group
arXiv:1205.0303 [math.PR] (Published 2012-05-02, updated 2014-05-10)
A central limit theorem for the zeroes of the zeta function