arXiv Analytics

Sign in

arXiv:2412.15421 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Superconductivity in Epitaxial SiGe for Cryogenic Electronics

Julian A. Steele, Patrick J. Strohbeen, Carla Verdi, Ardeshir Baktash, Alisa Danilenko, Yi-Hsun Chen, Jechiel van Dijk, Lianzhou Wang, Eugene Demler, Salva Salmani-Rezaie, Peter Jacobson, Javad Shabani

Published 2024-12-19Version 1

Introducing superconductivity into group IV elements by doping has long promised a pathway to introduce quantum functionalities into well-established semiconductor technologies. The non-equilibrium hyperdoping of group III atoms into Si or Ge has successfully shown superconductivity can be achieved, however, the origin of superconductivity has been obscured by structural disorder and dopant clustering. Here, we report the epitaxial growth of hyperdoped Ga:Ge films by molecular beam epitaxy with extreme hole concentrations (n$_{h}$ = 4.15 $\times$ 10$^{21}$ cm$^{-3}$, ~17.9\% Ga substitution) that yield superconductivity with a critical temperature of T$_{C}$ = 3.5 K, and an out-of-plane critical field of 1 T at 270 mK. Synchrotron-based X-ray absorption and scattering methods reveal that Ga dopants are substitutionally incorporated within the Ge lattice, introducing a tetragonal distortion to the crystal unit cell. Our findings, corroborated by first-principles calculations, suggest that the structural order of Ga dopants creates a flat band for the emergence of superconductivity in Ge, establishing hyperdoped Ga:Ge as a low-disorder, epitaxial superconductor-semiconductor platform.

Related articles: Most relevant | Search more
arXiv:2305.04610 [cond-mat.mes-hall] (Published 2023-05-08)
Superconductivity in hyperdoped Ge by molecular beam epitaxy
arXiv:2506.20465 [cond-mat.mes-hall] (Published 2025-06-25)
Scalable and Tunable In-Plane Ge/Si(001) Nanowires Grown by Molecular Beam Epitaxy
arXiv:1905.04090 [cond-mat.mes-hall] (Published 2019-05-10)
Absence of quantum-confined Stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy
C. Sinito et al.