arXiv Analytics

Sign in

arXiv:2409.18711 [math.RT]AbstractReferencesReviewsResources

Recollements of thick subcategories

Yuxia Mei, Li Wang, Jiaqun Wei

Published 2024-09-27Version 1

Let $(\mathcal{A}, \mathcal{B}, \mathcal{C}, i^{*}, i_{\ast}, i^{!},j_!, j^\ast, j_\ast)$ be a recollement of extriangulated categories. We show that there is a bijection between thick subcategories in $\mathcal{C}$ and thick subcategories in $\mathcal{B}$ containing $i_{\ast}\mathcal{A}$. Futhermore, the thick subcategories $\mathcal{V}$ in $\mathcal{B}$ containing $i_{\ast}\mathcal{A}$ can induce a new recollement relative to $\mathcal{A}$ and $j^{\ast}\mathcal{V}$. We also prove that silting subcategories in $\mathcal{A}$ and $\mathcal{C}$ can be glued to get silting subcategories in $\mathcal{B}$ and the converse holds under certain conditions.

Comments: arXiv admin note: text overlap with arXiv:2012.03258
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2104.04924 [math.RT] (Published 2021-04-11)
Torsion pairs and recollements of extriangulated categories
arXiv:1304.2692 [math.RT] (Published 2013-04-09)
Recollements of Module Categories
arXiv:2110.08606 [math.RT] (Published 2021-10-16, updated 2022-12-28)
Lattices of t-structures and thick subcategories for discrete cluster categories