arXiv:2409.14445 [astro-ph.SR]AbstractReferencesReviewsResources
ALMASOP. The Localized and Chemically rich Features near the Bases of the Protostellar Jet in HOPS 87
Shih-Ying Hsu, Chin-Fei Lee, Sheng-Yuan Liu, Doug Johnstone, Tie Liu, Satoko Takahashi, Leonardo Bronfman, Huei-Ru Vivien Chen, Somnath Dutta, David J. Eden, Neal J. Evans II, Naomi Hirano, Mika Juvela, Yi-Jehng Kuan, Woojin Kwon, Chang Won Lee, Jeong-Eun Lee, Shanghuo Li, Chun-Fan Liu, Xunchuan Liu, Qiuyi Luo, Sheng-Li Qin, Dipen Sahu, Patricio Sanhueza, Hsien Shang, Kenichi Tatematsu, Yao-Lun Yang
Published 2024-09-22Version 1
HOPS 87 is a Class 0 protostellar core known to harbor an extremely young bipolar outflow and a hot corino. We report the discovery of localized, chemically rich regions near the bases of the two-lobe bipolar molecular outflow in HOPS 87 containing molecules such as H$_2$CO, $^{13}$CS, H$_2$S, OCS, and CH$_3$OH, the simplest complex organic molecule (COM). The locations and kinematics suggest that these localized features are due to jet-driven shocks rather than being part of the hot corino region encasing the protostar. The COM compositions of the molecular gas in these jet-localized regions are relatively simpler than those in the hot corino zone. We speculate that this simplicity is due to either the liberation of ice with a less complex chemical history or the effects of shock chemistry. Our study highlights the dynamic interplay between the protostellar bipolar outflow, disk, inner core environment, and the surrounding medium, contributing to our understanding of molecular complexity in solar-like young stellar objects.