arXiv Analytics

Sign in

arXiv:2409.13408 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Quantum geometry in condensed matter

Tianyu Liu, Xiao-Bin Qiang, Hai-Zhou Lu, X. C. Xie

Published 2024-09-20Version 1

One of the most celebrated accomplishments of modern physics is the description of fundamental principles of nature in the language of geometry. As the motion of celestial bodies is governed by the geometry of spacetime, the motion of electrons in condensed matter can be characterized by the geometry of the Hilbert space of their wave functions. Such quantum geometry, comprising of Berry curvature and quantum metric, can thus exert profound influences on various properties of materials. The dipoles of both Berry curvature and quantum metric produce nonlinear transport. The quantum metric plays an important role in flat-band superconductors by enhancing the transition temperature. The uniformly distributed momentum-space quantum geometry stabilizes the fractional Chern insulators and results in the fractional quantum anomalous Hall effect. We here review in detail quantum geometry in condensed matter, paying close attention to its effects on nonlinear transport, superconductivity, and topological properties. Possible future research directions in this field are also envisaged.

Related articles: Most relevant | Search more
arXiv:2405.16944 [cond-mat.mes-hall] (Published 2024-05-27)
Even- and Odd-denominator Fractional Quantum Anomalous Hall Effect in Graphene Moire Superlattices
Jian Xie et al.
arXiv:2308.10406 [cond-mat.mes-hall] (Published 2023-08-21)
Toward a global phase diagram of the fractional quantum anomalous Hall effect
arXiv:2409.02997 [cond-mat.mes-hall] (Published 2024-09-04)
Entropy-Enhanced Fractional Quantum Anomalous Hall Effect