arXiv Analytics

Sign in

arXiv:2409.09604 [math.AP]AbstractReferencesReviewsResources

Small scales in inviscid limits of steady fluids

Yan Guo, Zhuolun Yang

Published 2024-09-15Version 1

In this article, we study the 2D incompressible steady Navier-Stokes equation in a channel $(-L,0)\times(-1,1)$ with the no-slip boundary condition on $\{Y = \pm 1\}$, and consider the inviscid limit $\varepsilon \to 0$. In the special case of Euler shear flow $(u_e(Y),0)$, we construct a steady Navier-Stokes solution for $\varepsilon \ll1$, $$\left\{ \begin{aligned} &u^\varepsilon \sim u_e + u_p + O(\sqrt{\varepsilon}),\\ &v^\varepsilon \sim h(Y) \exp\{Xu_e(Y)/\varepsilon\} + O(\sqrt{\varepsilon}), \end{aligned}\right. $$ where $u_p$ represents the classical Prandtl layer profile, and $h(Y)$ is an arbitrary smooth, compactly-supported function with small magnitude. While the classical Prandtl boundary layer $u_p$ exhibits a small scale of order $\sqrt{\varepsilon}$ in $Y$ near $Y = \pm 1$, the profile we construct reveals an $\varepsilon$ small scale of $Xu_e(Y)$ in the vertical velocity component.

Related articles: Most relevant | Search more
arXiv:math/0307295 [math.AP] (Published 2003-07-22)
On the inviscid limit for 2D incompressible flow with Navier friction condition
arXiv:1905.13047 [math.AP] (Published 2019-05-29)
Inviscid Limit for the Free-Boundary problems of MHD Equations with or without Surface Tension
arXiv:2207.11008 [math.AP] (Published 2022-07-22)
A KAM approach to the inviscid limit for the 2D Navier-Stokes equations