arXiv:2409.03602 [math.GR]AbstractReferencesReviewsResources
A combination theorem for hierarchically quasiconvex subgroups, and application to geometric subgroups of mapping class groups
Published 2024-09-05Version 1
We provide sufficient conditions for two subgroups of a hierarchically hyperbolic group to generate an amalgamated free product over their intersection. The result applies in particular to certain geometric subgroups of mapping class groups of finite-type surfaces, that is, those subgroups coming from the embeddings of closed subsurfaces. In the second half of the paper, we study under which hypotheses our amalgamation procedure preserves several notions of convexity in HHS, such as hierarchical quasiconvexity (as introduced by Behrstock, Hagen, and Sisto) and strong quasiconvexity (every quasigeodesic with endpoints on the subset lies in a uniform neighbourhood). This answers a question of Russell, Spriano, and Tran.