arXiv Analytics

Sign in

arXiv:2408.16750 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Entanglement of Disjoint Intervals in Dual-Unitary Circuits: Exact Results

Alessandro Foligno, Bruno Bertini

Published 2024-08-29Version 1

The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator. Namely, it is expected to show qualitatively different behaviours depending on whether the underlying microscopic dynamics is chaotic or integrable. So far, however, this could only be verified in the context of conformal field theories. Here we present an exact confirmation of this expectation in a class of interacting microscopic Floquet systems on the lattice, i.e., dual-unitary circuits. These systems can either have zero or a super extensive number of conserved charges: the latter case is achieved via fine-tuning. We show that, for almost all dual unitary circuits the asymptotic entanglement dynamics agrees with what is expected for chaotic systems. On the other hand, if we require the systems to have conserved charges, we find that the entanglement displays the qualitatively different behaviour expected for integrable systems. Interestingly, despite having many conserved charges, charge-conserving dual-unitary circuits are in general not Yang-Baxter integrable.

Related articles: Most relevant | Search more
Entanglement negativity after a local quantum quench in conformal field theories
arXiv:cond-mat/0504243 (Published 2005-04-11, updated 2005-06-17)
Ageing without detailed balance in the bosonic contact and pair-contact processes: exact results
arXiv:cond-mat/0606116 (Published 2006-06-05, updated 2006-08-30)
Dichotomous Markov noise: Exact results for out-of-equilibrium systems. A review