arXiv Analytics

Sign in

arXiv:2408.16371 [astro-ph.HE]AbstractReferencesReviewsResources

A multi-dimensional view of a unified model for TDEs

Edward J. Parkinson, Christian Knigge, Lixin Dai, Lars Lund Thomsen, James H. Matthews, Knox S. Long

Published 2024-08-29Version 1

Tidal disruption events (TDEs) can generate non-spherical, relativistic and optically thick outflows. Simulations show that the radiation we observe is reprocessed by these outflows. According to a unified model suggested by these simulations, the spectral energy distributions (SEDs) of TDEs depend strongly on viewing angle: low [high] optical-to-X-ray ratios (OXRs) correspond to face-on [edge-on] orientations. Post-processing with radiative transfer codes have simulated the emergent spectra, but have so far been carried out only in a quasi-1D framework, with three atomic species (H, He and O). Here, we present 2.5D Monte Carlo radiative transfer simulations which model the emission from a non-spherical outflow, including a more comprehensive set of cosmically abundant species. While the basic trend of OXR increasing with inclination is preserved, the inherently multi-dimensional nature of photon transport through the non-spherical outflow significantly affects the emergent SEDs. Relaxing the quasi-1D approximation allows photons to preferentially escape in (polar) directions of lower optical depth, resulting in a greater variation of bolometric luminosity as a function of inclination. According to our simulations, inclination alone may not fully explain the large dynamic range of observed TDE OXRs. We also find that including metals, other than Oxygen, changes the emergent spectra significantly, resulting in stronger absorption and emission lines in the extreme ultraviolet, as well a greater variation in the OXR as a function of inclination. Whilst our results support previously proposed unified models for TDEs, they also highlight the critical importance of multi-dimensional ionization and radiative transfer.

Comments: 17 pages, 15 figures. Submitted to MNRAS
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:1803.03265 [astro-ph.HE] (Published 2018-03-08)
A unified model for tidal disruption events
arXiv:2104.06212 [astro-ph.HE] (Published 2021-04-13)
A unified model of tidal destruction events in the disc-dominated phase
arXiv:1806.00414 [astro-ph.HE] (Published 2018-06-01)
Constraining the inclination of the Low-Mass X-ray Binary Cen X-4