arXiv:2408.09370 [math.CO]AbstractReferencesReviewsResources
On Perles' configuration
Published 2024-08-18Version 1
In the 60s, Micha Perles constructed a point-line arrangement in the plane on nine points, which can not be realized only by points with rational coordinates. Gr\"unbaum conjectured that Perles' construction is the smallest: any geometric arrangement on eight or fewer points if it is realizable with real coordinates in the plane, it is also realizable with rational coordinates. In this note, we prove the conjecture.
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:1801.10326 [math.CO] (Published 2018-01-31)
Incidence structures near configurations of type $(n_3)$
arXiv:2209.04740 [math.CO] (Published 2022-09-10)
Inducibility in the hypercube
Cayley-Dickson Algebras and Finite Geometry