arXiv Analytics

Sign in

arXiv:2408.07530 [cs.CV]AbstractReferencesReviewsResources

Towards Real-time Video Compressive Sensing on Mobile Devices

Miao Cao, Lishun Wang, Huan Wang, Guoqing Wang, Xin Yuan

Published 2024-08-14Version 1

Video Snapshot Compressive Imaging (SCI) uses a low-speed 2D camera to capture high-speed scenes as snapshot compressed measurements, followed by a reconstruction algorithm to retrieve the high-speed video frames. The fast evolving mobile devices and existing high-performance video SCI reconstruction algorithms motivate us to develop mobile reconstruction methods for real-world applications. Yet, it is still challenging to deploy previous reconstruction algorithms on mobile devices due to the complex inference process, let alone real-time mobile reconstruction. To the best of our knowledge, there is no video SCI reconstruction model designed to run on the mobile devices. Towards this end, in this paper, we present an effective approach for video SCI reconstruction, dubbed MobileSCI, which can run at real-time speed on the mobile devices for the first time. Specifically, we first build a U-shaped 2D convolution-based architecture, which is much more efficient and mobile-friendly than previous state-of-the-art reconstruction methods. Besides, an efficient feature mixing block, based on the channel splitting and shuffling mechanisms, is introduced as a novel bottleneck block of our proposed MobileSCI to alleviate the computational burden. Finally, a customized knowledge distillation strategy is utilized to further improve the reconstruction quality. Extensive results on both simulated and real data show that our proposed MobileSCI can achieve superior reconstruction quality with high efficiency on the mobile devices. Particularly, we can reconstruct a 256 X 256 X 8 snapshot compressed measurement with real-time performance (about 35 FPS) on an iPhone 15. Code is available at https://github.com/mcao92/MobileSCI.

Related articles: Most relevant | Search more
arXiv:2004.12599 [cs.CV] (Published 2020-04-27)
Deploying Image Deblurring across Mobile Devices: A Perspective of Quality and Latency
arXiv:2306.00980 [cs.CV] (Published 2023-06-01, updated 2023-06-03)
SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds
Yanyu Li et al.
arXiv:2212.08057 [cs.CV] (Published 2022-12-15)
Real-Time Neural Light Field on Mobile Devices
Junli Cao et al.