arXiv Analytics

Sign in

arXiv:2408.04753 [math.RT]AbstractReferencesReviewsResources

Auslander algebras, flag combinatorics and quantum flag varieties

Bernt Tore Jensen, Xiuping Su

Published 2024-08-08Version 1

Let $D$ be the Auslander algebra of $\mathbb{C}[t]/(t^n)$, which is quasi-hereditary, and $\mathcal{F}_\Delta$ the subcategory of good $D$-modules. For any $\mathsf{J}\subseteq[1, n-1]$, we construct a subcategory $\mathcal{F}_\Delta(\mathsf{J})$ of $\mathcal{F}_\Delta$ with an exact structure $\mathcal{E}$. We show that under $\mathcal{E}$, $\mathcal{F}_\Delta(\mathsf{J})$ is Frobenius stably 2-Calabi-Yau and admits a cluster structure consisting of cluster tilting objects. This then leads to an additive categorification of the cluster structure on the coordinate ring $\mathbb{C}[\operatorname{Fl}(\mathsf{J})]$ of the (partial) flag variety $\operatorname{Fl}(\mathsf{J})$. We further apply $\mathcal{F}_\Delta(\mathsf{J})$ to study flag combinatorics and the quantum cluster structure on the flag variety $\operatorname{Fl}(\mathsf{J})$. We show that weak and strong separation can be detected by the extension groups $\operatorname{ext}^1(-, -)$ under $\mathcal{E}$ and the extension groups $\operatorname{Ext}^1(-,-)$, respectively. We give a interpretation of the quasi-commutation rules of quantum minors and identify when the product of two quantum minors is invariant under the bar involution. The combinatorial operations of flips and geometric exchanges correspond to certain mutations of cluster tilting objects in $\mathcal{F}_\Delta(\mathsf{J})$. We then deduce that any (quantum) minor is reachable, when $\mathsf{J}$ is an interval. Building on our result for the interval case, Geiss-Leclerc-Schr\"{o}er's result on the quantum coordinate ring for the open cell of $\operatorname{Fl}(\mathsf{J})$ and Kang-Kashiwara-Kim-Oh's enhancement of that to the integral form, we prove that $\mathbb{C}_q[\operatorname{Fl}(\mathsf{J})]$ is a quantum cluster algebra over $\mathbb{C}[q,q^{-1}]$.

Related articles: Most relevant | Search more
arXiv:1802.04320 [math.RT] (Published 2018-02-12)
Following Schubert varieties under Feigin's degeneration of the flag variety
arXiv:1111.2868 [math.RT] (Published 2011-11-11)
The Gelfand-Zeitlin integrable system and K-orbits on the flag variety
arXiv:1709.03618 [math.RT] (Published 2017-09-11)
Exceptional sequences and spherical modules for the Auslander algebra of $k[x]/(x^t)$