arXiv:2408.02857 [math.GT]AbstractReferencesReviewsResources
Correction terms of double branched covers and symmetries of immersed curves
Jonathan Hanselman, Marco Marengon, Biji Wong
Published 2024-08-05Version 1
We use the immersed curves description of bordered Floer homology to study $d$-invariants of double branched covers $\Sigma_2(L)$ of arborescent links $L \subset S^3$. We define a new invariant $\Delta_{sym}$ of bordered $\mathbb{Z}_2$-homology solid tori from an involution of the associated immersed curves and relate it to both the $d$-invariants and the Neumann-Siebenmann $\bar\mu$-invariants of certain fillings. We deduce that if $L$ is a 2-component arborescent link and $\Sigma_2(L)$ is an L-space, then the spin $d$-invariants of $\Sigma_2(L)$ are determined by the signatures of $L$. By a separate argument, we show that the same relationship holds when $L$ is a 2-component link that admits a certain symmetry.